
Bashar Dudin

Arithmetic for IT

Abstract

This is main reference for AFIT (Arithmetic for IT) project content. Project aims at generating RSA and ElGamal
encryption data for educational purposes. On the way, students shall face core arithmetic notions needed to generate and
manipulate such cryptosystems.

Contents

1 Introduction 2
2 How To Read This Document 2
3 Integer Arithmetic 2
3.1 Euclidean Division . 2
3.2 Primality . 4
3.3 Euclid’s Algorithm . 4
3.4 Bézout Theorem . 5

4 Modular Arithmetic 6
4.1 Day of Week . 7
4.2 The Ring Z/nZ . 8
4.3 Invertible Elements of Z/nZ . 10
4.4 Fermat’s Little Theorem . 11
4.5 Chinese Remainder Theorem . 12

5 Input of the CRT 15
5.1 Computing Invertibles . 16
5.2 Factoring Integers . 17

6 Ciphering : An Ersatz 18
6.1 Symmetric Ciphers . 18
6.2 Asymmetric Ciphers . 19

6.2.1 RSA Cryptosystem . 19
6.2.2 ElGamal Cryptosystem . 20

1 Introduction 2

1 Introduction

Arithmetic is a branch of mathematics that consists of the study of “numbers”, especially the properties of the
traditional operations on them – addition, subtraction, multiplication and division1.

In integer arithmetic divisibility is one of the central notions we deal with : Are two given numbers multiple of each other?
Are there specific numbers that don’t have any non-trivial divisors? Can one decompose a given integer as a product of
simpler (simplest) integer types from that perspective? You already know the answers to a number of these questions.
Numbers that can only be divided by themselves or ±1 are prime numbers. Any integer can be uniquely written as a
product of prime numbers up to reordering.

These apparently simple questions are at the core of arithmetic uses in IT. Aside from the fact computers are integer
calculators, divisibility questions are central in ciphering systems enabling secure exchange of information between two
parties ; assuming a third party gets access to the exchanged information they will have too much trouble deciphering it to
access the initial message.

The most known ciphering algorithm, RSA2, is based on the fact that factoring a number which is a product of two
prime numbers is a hard question, needing much resources and time. On the opposite, computing powers of integers
modulo a fixed given natural number is much less time-consuming.

The aim of this project is to get you through the arithmetic needed to try generating reasonably sized encryption systems.
Do not be mistaken however ; we’ll still be quite far from any real-life implementation of ciphering algorithms.

2 How To Read This Document

This document is to serve as a mathematical reference for a coding project heavily involving elementary modular arithmetic.
It contains examples, proofs and discussions needed to understand the core reason why used mathematical results are as
stated and not otherwise. Everything you’ll find here is there for a (good) reason ; the least of which is to put some sense
into a number of apparently unexpected statements.

That being said an in-depth understanding of all aspects of this reference is not needed to complete a satisfying enough
piece of the AFIT project. Do not hesitate to look for external documentation! ; this reference is here to serve as a
structuring lattice for your own searches. If you find references easing your learning process : go for it!

Here is a quick list of priorities to have, starting by high priority to low one. This is also a reading order you can stick
to.

• Section 3 is core arithmetic knowledge and has to be fully mastered ; part of it is only rephrasing your in-class maths
courses.

• Section 4 up till subsection 4.4 included is of essential importance to be able to write down your first cryptosystem.

• Section 6 is the main aim of AFIT. Focus is on the RSA algorithm though, but both are expected to be implemented.

• Sections 4.5 and 5 are challenging, they should be left aside as long as a proper implementation of RSA and ElGamal
cryptosystems hasn’t been satisfyingly tested.

3 Integer Arithmetic

This section is a quick reminder about what you’re going through in elementary arithmetic. OCaml primitives shall be given
for basic arithmetic operations you’re expected to use within your implementations.

Assumption 3.1 Our statements are going to be mainly focused on natural numbers. All have extensions to the case
of integers, we shall not need them in that general setting.

3.1 Euclidean Division

1https://en.wikipedia.org/wiki/Arithmetic.
2Standing for its inventors’ initials : Rivest, Shamir and Adleman.

https://en.wikipedia.org/wiki/Arithmetic

3.1 Euclidean Division 3

Definition 3.1 Given a couple of natural numbers (n, p) the natural number p is said to divide n, denoted by p | n, if
there is an integer k ∈ N such that n = kp.

R An integer n is said to be even if 2 | n, it is odd otherwise.

R Any integer divides 0. Indeed, given an integer n ∈ N we can always write 0 = 0×n.

If you take any two natural numbers randomly, there is little chance one of them divides the other. It is always possible to
account for the lack of divisibility though ; this is enforced by what is called Euclidean division3.

Proposition 3.2 Given any couple of natural numbers (a,b) ∈ N×N∗ then there is a unique couple (q,r) of natural
numbers such that

a = bq+ r where 0≤ r < b.

R The unique (q,r) has first entry called quotient of a by b while the second is called the remainder of the Euclidean
division of a by b. The latter is often called remainder of a modulo b.

Proof. There are two statements in the previous proposition: one is about uniqueness and the other is about existence.
Assuming there are two couples (q,r) and (q′,r′) satisfying statement then

bq+ r = bq′+ r′⇒ b(q−q′) = r′− r.

Now left hand of equality is in {−(b−1),b−1} and is though a multiple of b. It has then to be 0. Thus r = r′ and then
q = q′.
Existence is based on the following algorithmic procedure:

• If 0≤ a < b then (0,a) works

• Else add one to your quotient and look at Euclidean division of a−b and b.

Such a procedure terminates because of a deep property of N: any non-empty subset of N has a minimal element. The point
is to show the set {q | a−bq < b} is not empty. Intuition points out the fact it is the case, since left-hand side of condition
could be as negative as we’d wish. This is indeed true but this stems from a deep fact we haven’t shown. Knowing it is not
empty, it has a minimal element q∗. For q∗ the expression a−bq∗ can only be non-negative. Indeed, having q∗ being the
smallest element satisfying a−bq∗ < b then a−b(q∗−1)≥ b. Notice the last inequality is obtained by adding b to the
left-hand side. Both previous inequalities cannot happen at the same time if a−bq∗ is not non-negative, because otherwise
adding b to the left-hand side wouldn’t give anything bigger than b.

In OCaml there is no primitive to compute Euclidean division at once. There are two inorder operators though to respectively
compute quotient and remainder : / and mod.

R Using Euclidean division, the fact “b | a” is equivalent to the fact “remainder of Euclidean division of a by b is 0”.
Therefore, testing whether a number a is a multiple of b in OCaml is written

let is_divisible a b = (a mod b = 0) ;;

3Also called integer division.

3.2 Primality 4

3.2 Primality

Definition 3.2 A natural number strictly bigger than 1 is said to be prime if it can only be divided by 1 and itself.

Checking that a number n is prime is a hard problem ; there is no other option but to go through the list of smaller natural
numbers to check for divisibility. To be precise through natural numbers smaller than

√
n. Indeed, if k | n then n/k does

also divide n. Writing the couples (k,n/k) of divisors of n one can figure out that at
√

n one starts getting the same couples
but with flipped entries. For instance for divisors of 36 we get

(1,36) (36,1)
(2,18) (18,2)
(4,9) (9,4)
(6,6)

Importance of prime numbers comes from the following deep result:

Theorem 3.3 Any non-zero natural number n can be written as a product of prime numbers. This decomposition of n
into a product of prime numbers is unique up to reordering of involved primes.

R A prime appearing in the decomposition of a natural number n is called a factor of n.

This theorem roughly says that knowing prime numbers is enough to understand all there is about natural numbers. The
point is that generating prime numbers or characterising them is a highly challenging problem. An easier problem to take
care of is the one of checking whether two given natural numbers have common factors.

Definition 3.3 Two non-zero natural numbers are said to be relatively prime or coprime if they don’t have any
common factors.

In order to tackle previous question of detecting whether two natural numbers are relatively prime we’ll be introducing a
new concept ; the GCD.

Definition 3.4 The GCD, short for Greater Common Divisor, of two non-zero integers a and b is the biggest integer d
satisfying d | a and d | b.

There is a point one needs to make clear here: why would such a maximal natural with such property exist?

• 1 does always satisfy this property which means that the set of natural numbers satisfying that property is not empty.

• Any such natural number is smaller that min{|a|, |b|}, set is therefore bounded above. This gets us back to one of the
core properties of N ensuring any non-empty subset bounded above has a maximal element.

N The GCD of two non-zero natural numbers a and b is denoted by a∧b.

Proposition 3.4 Two non-zero natural numbers a and b are relatively prime iff a∧b = 1.

3.3 Euclid’s Algorithm

This algorithm is central for all arithmetic computational applications. It is the main reason why one can generate RSA
public and private keys or parallelize integer computations.

The algorithm’s idea is based on the following remark : let a and b be two non-zero natural numbers. Euclidean division
gives a couple (q,r) of natural numbers such that

a = bq+ r 0≤ r < b. (1)

3.4 Bézout Theorem 5

If d divides a and b then it does divide a−bq ; if a = kd and b = `d then

a−bq = kd−q`d = (k−q`)d.

Thus d divides r. This is true for any common divisor of a and b; this is specifically true for the GCD of a and b. Let us now
assume that we’d go through this process iteratively : writing r0 = a, r1 = b, q1 = q and r2 = r, equation (1) then becomes

r0 = q1r1 + r2 0≤ r2 < r1 (2)

where each divisor of r0 and r1 is also a divisor of r2. Updating

qn+1 = rn/rn+1
rn+2 = rn mod rn+1

we get the sequence of relations obtained through Euclidean division

r0 = q1r1 + r2 0≤ r2 < r1
r1 = q2r2 + r3 0≤ r3 < r2
...

...
...

...
...

...
rn−1 = qnrn + rn+1 0≤ rn+1 < rn

At each level of the set of equations any common divisor of rn+1 and rn is a divisor of rn+2. At each such level the
remainder rn is an integer which is at least 1 less than the previous remainder unless it was already 0. All such remainders
are non-negative, there is therefore a point after which all obtained remainders are 0. Let ` be the index of the last non-zero
remainder in the previous sequence. We have then the sequence

r0 = q1r1 + r2 0≤ r2 < r1
r1 = q2r2 + r3 0≤ r3 < r2
...

...
...

...
...

...
rn−1 = qnrn + rn+1 0≤ rn+1 < rn

...
...

...
...

...
...

r`−2 = q`−1r`−1 + r` 0≤ r` < r`−1
r`−1 = q`r`

(3)

Let’s look at these equations bottom up. The last non-zero remainder r` divides r`−1. Now looking at previous line it does
have to divide r`−2. Going up through all equations we end up having a natural number dividing r0 and r1, i.e. dividing a
and b. We thus get that r` | a∧b. Going up down, any common divisor d of r0 and r1 has to divide r`, this is in particular
the case of a∧b. We get that a∧b | r` and vice versa ; thus r` = a∧b.

Proposition 3.5 The last non-zero remainder in the previous sequence is the GCD of first initial two terms.

R It is legitimate to wonder how many Euclidean divisions one needs to do at most to get the GCD of two given natural
numbers. An easy bound to see is the one bounded by b. There is in fact a better bound than b, given by 2log2(b)+2.
You do not need to know how to figure it out ; it is enough to understand how quick a Euclidean division algorithm is.

R Deciding on relative primality of two given non-zero natural numbers is about executing the Euclidean division and
getting 1 as last non-zero remainder.

3.4 Bézout Theorem

This section is devoted to the Bézout Theorem, claiming the existence of a Diophantine combination of two given integers
equal to the GCD of these same two integers.

4 Modular Arithmetic 6

Theorem 3.6 Given a couple of non-zero natural numbers (a,b) there exists a couple of integers (u,v) such that

ua+ vb = a∧b.

Proof. The proof is computational, it is based on Euclid’s Algorithm. It is mainly about rewriting the series of equations 3.
Expressing everything in terms of the remainders we get the equations

a − q1b = r2
b − q2r2 = r3
...

...
...

...
...

r`−2 − q`−1r`−1 = a∧b

(4)

Going bottom up, one can express each one of the remainders in terms of previous ones up till getting to a and b. This
guess suggests that last relation is an integer combination of a and b. Here is a way to see it4 in a proper way. Consider the
following three equations, the last one is the first equation of previous relations 4.

1×a − 0×b = r0
0×a − 1×b = r1
1×a − q1×b = r2

(5)

Notice the last equation is the first minus q1 times the second. This pattern does in fact propagate till getting the GCD
on the right-hand side of equalities. For instance using Euclidean division of r1 by r2 (given by second equation of 4) to
subtract to second equation q2 times the third in 5 we get

1×a + 0×b = r0
0×a + (−1)×b = r1
1×a + (−q1)×b = r2

(−q2)×a + (−1+q1q2)×b = r3

(6)

Going on step by step, using Euclidean division of successive remainders on the right-hand-sides to manipulate correspond-
ing equations we get a relation between a∧b and a, b defined by an integer combination of both. Writing (un) and (vn) for
the sequences of coefficients of a and b respectively the recursive definitions of both sequences are given by{

un+1 = un−1−qnun
vn+1 = vn−1−qnvn

(7)

This is the starting point of a proper implementation of the extended Euclid Algorithm you’re going to have to try out.

Corollary 3.7 Two natural numbers a, b are relatively prime iff there is a couple of integers (u,v) such that

ua+ vb = 1. (8)

Proof. If a and b are relatively prime a∧ b = 1. Following theorem 3.6 there is a couple (u,v) satisfying the expected
relation. Now if there is a relation such as 8, then any divisor of a and b is also a divisor of 1. Since a∧b is a positive
divisor of 1 it has to be 1, thus a and b are relatively prime.

R We’ve already discussed (briefly) the complexity of Euclid’s algorithm. It is time-wise the same for the extended
Euclid’s algorithm giving Bézout coefficients. We therefore do have an efficient algorithm to measure whether two
natural numbers are relatively prime. That’s only one of the applications of this algorithm, we’ll be seeing a couple of
others later on.

4 Modular Arithmetic

Integers are not the only mathematical objects one can do arithmetic with ; there are a series of these. Main mathematical
objects for which one can talk about arithmetic are called rings. The set Z of integers is only one case of such structures,
there are many others. We shall be looking into extra examples of such objects, though we’ll be only interested in basic
computations with these ones.

4In fact to implement it!

4.1 Day of Week 7

4.1 Day of Week

Before getting into the core part of modular arithmetic, let’s look at an example where such arithmetic appears : computing
the day of the week a given date is.

Question 4-1 Assuming we’re on Monday, how do you compute the day we’ll be in 37 days from now?

A simple way to do so is to number the days of the week from 0 to 6 starting at the day you’re at : Monday. Every 7 days
you get back on Monday, that’s something you know already. The Euclidean division of 37 by 7 is written

37 = 5×7+2.

We thus get 5 times to Monday before going on to Wednesday whose number is 2. Thus the only number that matters in
this question is 37 mod 7. This argument is general: any number of days n after the first Monday one started with is going
to get us back to n mod 7, which is a number between 0 and 6.

Let’s add a more formal layer to get a better grasp on basic computations of week days. We’re going to compute week
days starting at the first day of our era following the Gregorian calendar. January, 1-st 0001 was a Saturday, let W denote
the set of indices of week days, thus

W = {0,1,2,3,4,5,6},

where 0 is a Saturday. We shall assume that number of days before and after January, 1-st 0001 is infinite5.

R We’ll be calling date the number of days, before or after the first day of our era; this is to avoid ambiguity with the day
of the week we’re interested in computing.

Our main concern can be rephrased as:

Given a date d ∈ Z what is the day of the week d corresponds to?

We’ve already answered above question previously: one only needs to look for the remainder of d modulo 7.

R Be careful here about the fact that OCaml mod built-in function doesn’t give the expected result if prefix (left) argument is
negative. The OCaml mod function returns minus remainder of absolute value of prefix argument if the latter is negative.
This does not follow in the integer division standard definition. The latter is the exact same definition you’ve seen for
the case of natural numbers, thus remainder is always non-negative.

The computations involved in detecting week days of a given date involve a number of welcome compatibilities ; with
respect to both addition and multiplication.

For instance, one could wonder if the 37-th day after Friday (6) is the same as the (37 mod 7)-th day after Friday. The
day we’re looking for is the 43-rd day after Saturday, one can write

43 = 6×7+1

which gives a Sunday. We mainly did the following computation:

(37 + 6) mod 7.

Trying out the computation (which corresponds to the previously suggested one):

((37 mod 7) + (6 mod 7)) mod 7

we find back same result. This is a general fact. Let d1 and d2 be two given dates. Both have an integer division by 7 that
can be written:

d1 = 7×q1 + r1 (9)
d2 = 7×q2 + r2 (10)

5Which is hardly conceivable going back and rather compromised going forward ...

4.2 The Ring Z/nZ 8

Summing these two equations one gets:

(d1 +d2) = 7× (q1 +q2)+(r1 + r2).

There is no guarantee that (r1 + r2) is smaller than 7. Looking into the integer division

(r1 + r2) = 7× s+ t

We get that
(d1 +d2) = 7× (q1 +q2 + s)+ t

with t being non-negative and smaller than 7. The last two relations assert that

(r1 + r2) mod 7 = (d1 +d2) mod 7

and that is exactly what we wrote down previously in our particular example.
Same type of compatibilities hold for multiplying dates. Assume we’re looking at 3 times the 32-nd day. This is the

96-th day, it is given by 96 mod 7 = 5, i.e. Thursday. This is the exact same result as the one given by

((3 mod 7) * (32 mod 7)) mod 7

This is a general fact as well ; reusing equations 9 one can write:

d1d2 = 7× (7q1q2 +q2r1 +q1r2)+ r1r2

without any guarantee on the fact r1r2 is non-negative and smaller than 7. Through the extra division

r1r2 = 7× s+ t

we figure out the Euclidean division

d1d2 = 7× (7q1q2 +q2r1 +q1r2 + s)+ t

which exactly states that
d1d2 mod 7 = r1r2 mod 7.

To sum things up:

• The day of the week of a given date d is the remainder of the Euclidean division of d by 7.

• The day of the week of the sum of two dates d1, d2 is the remainder modulo 7 of the sum of both or equally the
remainder of the sum of remainder of each.

• Previous bullet-point is also true in the case of multiplication. The remainder of multiplication of two dates d1 and
d2 modulo 7 is the same as the remainder modulo 7 of multiplication of both remainders.

The computations we’ve met here are a basic manifestation of more general properties and constructions of central
importance in arithmetic. They have a serious impact on integer programming within computers.

4.2 The Ring Z/nZ

We shall not define formally what a ring is. It is enough to know this is a set for which you have two binary operators called
addition and multiplication that have the exact same properties you’ve always been using when dealing with integers. The
ring we’ll be defining next has an underlying finite set. This is of major importance when you’re looking at things from a
machine perspective ; anything that lives in such rings should be – up to memory issues – machine implementable.

Definition 4.1 Let n > 1 be a positive integer. The ring Z/nZ is the set

Z/nZ= {0, . . . ,n−1}

together with the two binary operators⊕ and⊗ defined in the following fashion: Given any two elements x, y ∈ Z/nZ

x⊕ y = (x+ y) mod n (addition)

4.2 The Ring Z/nZ 9

x⊗ y = (x× y) mod n. (multiplication)

Example 4.1 The simplest example is for n = 2. In that case Z/2Z= {0,1}. Addition and multiplication are simply
given by the rules

⊕ 0 1
0 0 1
1 1 0

⊗ 0 1
0 0 0
1 0 1

Example 4.2 The case n = 3 is the set {0,1,2} given by the addition and multiplication rules :

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

⊗ 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

In practice we’re often looking at the projection of integers modulo a given positive integer. This approach is represented
by looking at the following simple map:

πn : Z −→ Z/nZ
x 7−→ x mod n

Example 4.3 The image of an element x ∈ Z by π2 tells whether x is either odd or even. If π2(x) = 0 then x is even
otherwise it is odd. The image of x by π3 being 0 says x can be divided by 3. If π3(x) = 1 this means x is of the form
3k+1 for some k ∈ Z.

N It is standard to denote by x̄n the quantity πn(x) or x mod n. Depending on context the index might be left out as well.

Many central questions in modern arithmetic theory are summed up by :

Let x be an integer whose remainders x̄n modulo a reasonably big number of positive integers satisfy a property P .
Does x also satisfy P?

Example 4.4 Let P be the property described by being smaller than 100. Let x be an integer, looking at x̄n for
n ≤ 100 doesn’t tell you anything about the fact x ≤ 100. Indeed, any number has smaller remainder than 100 if
taken modulo a smaller number than 100. Likewise if x̄101 is smaller than 100 that doesn’t ensure x is. For instance
102101 = 1. Some meditation would get you to notice that if x ≤ 100 then all remainders against integers n ≥ 101
will always give you x back. The converse is also true. If all remainders x̄n for n≥ 101 always give you x back then
x≤ 100.

R The previous example is a dummy one, for a more accurate research question: ask!

The compatibilities we brought to light during section 4.1, regarding behaviour of addition and multiplication with respect
to modulo operations, are general and expressed by: Given two integers x, y ∈ Z then

(x+ y)n = x̄n⊕ ȳn (addition)

(xy)n = x̄n⊗ ȳn. (multiplication)

N In this line of work, notation is abused frequently. In many cases both ·̄ and index are dropped. This is as well the case
for ⊕ and ⊗ that are not standard notation, they are simply replaced by + and −. In the following, we shall drop ⊕ and
⊗ all the time. Aside from this case we either keep ·̄ and index or drop all but introduce the following notation: Given x,
y ∈ Z then equality

x̄n = ȳn

4.3 Invertible Elements of Z/nZ 10

shall be written as
x≡ y [n]

or even sometimes as
x≡n y.

Equality here is replaced by ≡ and [n] is to indicate the fact we’re looking at remainders of x and y modulo n, or
equivalently at x̄n and ȳn in Z/nZ. Previous compatibilities are thus written

x+ y≡ x̄n + ȳn [n] (addition)

xy≡ x̄nȳn [n] (multiplication)

4.3 Invertible Elements of Z/nZ

If you’re looking at addition and multiplication for rational or real numbers, you know that for any non-zero number x ∈R∗
there is another number y such that xy = 1. For instance if x = 2 then y = 0.5. This is in general not the case anymore for
Z/nZ. Here is the multiplication table for Z/4Z

⊗ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

.

One can see that any element x except for 0 and 2 has a counterpart y such that xy≡ 1 [n]. The point is that 2 is non-zero
but doesn’t have any such counter-part, a behaviour that is different from what you’re used to.

Definition 4.2 An element x ∈ Z/nZ is said to be invertible if there is y ∈ Z/nZ such that xy≡ 1 [n].

The element y is unique and called the inverse of x in Z/nZ.

N The inverse of an invertible element x ∈ Z/nZ is written x−1. The set of invertible elements of Z/nZ is denoted by
(Z/nZ)×. The number of invertible elements of Z/nZ is written ϕ(n) ; it is the cardinal of (Z/nZ)×. In the literature
ϕ(n) is called the Euler number of n.

Let x be an invertible element in Z/nZ whose inverse is y. By definition this means xy≡ 1 [n]; more explicitly there is
k ∈ Z such that

xy+ kn = 1. (11)

Referring to Bézout Theorem this implies n and x are relatively prime. Conversely, if x and n are relatively prime there is a
relation of type 11, modulo n this shows x has an inverse given by y.

Proposition 4.1 The set of invertible elements of Z/nZ is equivalently the set of elements in {0, . . . ,n−1} relatively
prime to n. This set is called the multiplicative group of Z/nZ.

Corollary 4.2 Given a prime number p all elements of {1, . . . , p−1} are invertible, i.e.

(Z/pZ)× = {1, . . . , p−1}.

Proof. Anyi nteger that is not a multiple of p is relatively prime to p. That is in particular the case of any non-zero element
in Z/pZ.

Writing down a function testing whether a given integer modulo n is invertible is about a proper use of the Bézout algorithm
; something we’re already familiar with. One can ease the search a little though, by knowing a little more about the inner
properties of elements in (Z/nZ)×.

4.4 Fermat’s Little Theorem 11

Proposition 4.3 Given two elements x, y that are invertible modulo n then xy is also invertible modulo n.

Proof. Let x−1 and y−1 be the respective inverses of x and y. The product y−1x−1 is then the inverse of xy.

As soon as one finds an invertible element then all multiplicative powers of that element give other invertible ele-
ments.

Example 4.5 For example in the case of Z/5Z the multiplicative group is {1,2,3,4}. The powers of 1 don’t give
much but 1. The powers of 2 modulo 5 span the set {1,2,3,4}.

We’re not always as lucky as to find an integer whose powers span the whole multiplicative group, i.e. which enables us to
recover all of its elements.

Example 4.6 In the case of Z/8Z the multiplicative group is {1,3,5,7}. You can check that any element in (Z/8Z)×
has square which is 1. Looking into powers of an invertible element x here doesn’t give any other invertible element
except for 1 if x 6= 1.

The subset of different elements one can generate by looking at powers of a given invertible element in the multiplicative
group is of high interest in much of the arithmetic modulo n. Such subsets can measure the strength of an RSA private key.
Valid public data for the ElGamal cryptosystem is an element that partially spans the multiplicative group of a specific
Z/nZ. The next section is devoted to having a closer look at powers of invertible elements in Z/nZ.

4.4 Fermat’s Little Theorem

Definition 4.3 Let x be an invertible element in Z/nZ (thus an element in (Z/nZ)×). The order of x is the smallest
k ∈ N∗ such that xk ≡ 1 [n]. We write ordn(x) for the order of x in n.

Example 4.7 In the case n = 8 the invertible elements of Z/8Z are 1, 3, 5, 7. The first is of order 1 the latter of order
2.

Example 4.8 The multiplicative group of Z/9Z is given by the elements 1, 2, 4, 5, 7 and 8. Respectively of orders 1,
6, 3, 6, 3 and 2.

The emphasized definite article in definition 4.3 suggests there is always one such smallest positive integer being the order
of x. This implicitly expresses the fact the set {k | xk ≡ 1 [n]} is not empty. Though we tested this fact on two simple
examples, we’ve shown no guarantee this is the case in general until now.

Theorem 4.4 Let x be an invertible element in Z/nZ. Then xϕ(n) ≡ 1 [n].

Proof. To ease notation we write Gn for the multiplicative group (Z/nZ)×. The proof we’re giving here is based on a very
structural understanding of how an element of Gn acts on its environment. Let mx be the map mx : Gn→ Gn sending an
element y ∈ Gn on xy. Taking the example when n = 9 and x = 2 the map m2 has domain and target G9 = {1,2,4,5,7,8}.
It sends the list of elements [1;2;4;5;7;8] entry-wise to [2;4;8;1;5;7]. Thus sends

1 → 2
2 → 4
4 → 8
5 → 1
7 → 5
8 → 7

.

You can check that this defines a bijection of G9 on itself ; this is something we call a permutation. The image of m2 is
equal here to G9. This observation is much more general: mx is a bijection from Gn on itself.

To show mx is injective assume there are two elements y1 and y2 in Gn such that mx(y1) = mx(y2). This means

xy1 ≡ xy2 [n].

4.5 Chinese Remainder Theorem 12

By definition x is invertible, multiplying previous relation by x−1 gets y1 ≡ y2 [n]. To check mx is surjective one can see
that given any element y in Gn the element t = x−1y in Gn satisfies mx(t) = y.

The fact that mx is bijective implies that we have an equality between the sets

{xy | y ∈ Gn}= {y | y ∈ Gn}

the product of all elements of right-hand and left-hand sets are equal (we have the same sets on both sides). This is written

xϕ(n)
(

∏
y∈Gn

y
)
≡
(

∏
y∈Gn

y
)
[n].

The product of invertible elements is invertible, multiplying previous relation by its inverse we get

xϕ(n) ≡ 1 [n],

which is what we expect.

Corollary 4.5(Fermat’s Little Theorem Let p be a prime number, a let x be a non-zero element in Z/pZ, then

xp−1 ≡ 1 [p].

Proof. The set of invertible element of Z/pZ is exactly the set of its non-zero elements and ϕ(p) = p−1.

R Fermat’s Little Theorem is also stated as : given any element x in Z/pZ we have that xp ≡ x [p]. It is equivalent to
previous statement. If x is invertible multiplying equation by x−1 gives back 4.5. If x is not, it is zero and relation just
says 0≡ 0 [p] which is indeed true.

In the two examples 4.7 and 4.8 we have ϕ(8) = 4 and ϕ(9) = 6. The orders of invertible elements in Z/8Z are all divisors
of ϕ(8). That is the case as well for orders of invertibles of Z/9Z. This fact is general.

Proposition 4.6 Let x be an invertible element in Z/nZ. An element m ∈ N∗ satisfies xm ≡ 1 [n] if and only if it is a
multiple of ordn(x).

Proof. Let k be the order of x modulo n. The Euclidean division of m by k gives the relation m = kq+ r where 0≤ r < k.
We thus get

xm ≡ xkqxr [n] (12)
1≡ xr [n]. (13)

If r is positive then r would satisfy xr ≡ 1 [n] and be smaller than k, which is not possible by definition of k (the smallest
positive integer satisfying xk ≡ 1 [n]). Then r = 0 and m is indeed a multiple of the order of x.

Corollary 4.7 The order of an invertible element in Z/nZ divides ϕ(n).

Proof. This is due to the fact xϕ(n) ≡ 1 [n] following 4.4.

4.5 Chinese Remainder Theorem

It is a standard practice in mathematics to try understanding an object by identifying it to a composite of easier-to-understand
sub-objects. This is also a philosophy one en s in computer science : this is more or less the principle of “divide and
conquer” strategies. Not to mention the fact software is mainly thought of as a series of components linked together and
each devoted to a given task. In the case of modular arithmetic one can decompose many Z/nZ into cartesian products of
smaller Z/mZ sets. This is what we’ll be going through in this section.

Let m and n be two relatively prime integers bigger than 1. Let ψ be the map

ψ : Z/nmZ −→ Z/nZ×Z/mZ
x 7−→ (x̄n, x̄m)

keeping the remainder of x ∈ {0, . . . ,nm−1} modulo n and modulo m respectively as first and second entry of a couple in
Z/nZ×Z/mZ.

4.5 Chinese Remainder Theorem 13

Example 4.9 Let’s consider the case (n,m) = (2,3). The map ψ is one having domain Z/6Z and target Z/2Z×Z/3Z.
Here are the list of images of the 6 elements of Z/6Z by ψ:

0 → (0,0)
1 → (1,1)
2 → (0,2)
3 → (1,0)
4 → (0,1)
5 → (1,2)

You can first notice that this map is bijective. Thus Z/6Z contains as much information as Z/2Z×Z/3Z. There is in
fact more: the arithmetic operations on Z/6Z can be reflected on Z/2Z×Z/3Z through ψ . Let us define addition and
multiplication operators on Z/2Z×Z/3Z in the following fashion: given (x1,x2) and (y1,y2) ∈ Z/2Z×Z/3Z we
have

(x1,x2)+(y1,y2) = (x1 + y1,x2 + y2) (addition)
(x1,x2)× (y1,y2) = (x1y1,x2y2). (multiplication)

These are called component-wise addition and multiplication. Here are the addition and multiplication tables for Z/6Z
with usual operations and Z/2Z×Z/3Z with the operations we just defined.

Z/6Z Z/2Z×Z/3Z

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

+ (0,0) (1,1) (0,2) (1,0) (0,1) (1,2)
(0,0) (0,0) (1,1) (0,2) (1,0) (0,1) (1,2)
(1,1) (1,1) (0,2) (1,0) (0,1) (1,2) (0,0)
(0,2) (0,2) (1,0) (0,1) (1,2) (0,0) (1,1)
(1,0) (1,0) (0,1) (1,2) (0,0) (1,1) (0,2)
(0,1) (0,1) (1,2) (0,0) (1,1) (0,2) (1,0)
(1,2) (1,2) (0,0) (1,1) (0,2) (1,0) (0,1)

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

× (0,0) (1,1) (0,2) (1,0) (0,1) (1,2)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
(1,1) (0,0) (1,1) (0,2) (1,0) (0,1) (1,2)
(0,2) (0,0) (0,2) (0,1) (0,0) (0,2) (0,1)
(1,0) (0,0) (1,0) (0,0) (1,0) (0,0) (1,0)
(0,1) (0,0) (0,1) (0,2) (0,0) (0,1) (0,2)
(1,2) (0,0) (1,2) (0,1) (1,0) (0,2) (1,1)

We have placed an element x ∈ Z/6Z and its image ψ(x) ∈ Z/2Z×Z/3Z at same position of respective tables.
Looking into it you can check the two following facts: for every x, y ∈ Z/6Z we have

ψ(x+ y) = ψ(x)+ψ(y) ψ(x× y) = ψ(x)×ψ(y).

To sum things up, ψ is here a bijection transforming arithmetic operations on domain into compatible ones on the
target. One can either make computations on the right column then go left or the other way around.

The previous example is only an instance of what happens in general. This is summed up in the Chinese Remainder
Theorem we’re stating now.

Theorem 4.8 Let n, m be two positive integers n, m > 1 that are relatively prime. The map

ψ : Z/nmZ −→ Z/nZ×Z/mZ
x 7−→ (x̄n, x̄m)

4.5 Chinese Remainder Theorem 14

is a bijective map such that for each x, y ∈ Z/nmZ we have the compatibilities

ψ(x+ y) = ψ(x)+ψ(y) (addition)
ψ(x× y) = ψ(x)×ψ(y). (multiplication)

R Be careful about the fact that arithmetic operations in above compatibilities are not defined in the same fashion on
both sides of equality. The left part is addition as we understand it in Z/nmZ, the second being component-wise in
Z/nZ×Z/mZ.

Proof. Addition and multiplication compatibilities are independent from the fact that ψ would be a bijection. Taking two
elements x, y ∈ Z/nmZ then, by definition

ψ(x+ y) = ((x+ y)n,(x+ y)m) (14)

using compatibility of modulo to addition

ψ(x+ y) = (x̄n + ȳn, x̄m + ȳm) (15)

by definition of addition in Z/nZ×Z/mZ

ψ(x+ y) = (x̄n, ȳm)+(x̄n, ȳm) (16)

lastly, by definition of ψ

ψ(x+ y) = ψ(x)+ψ(y) (17)

The exact same reasoning applied to multiplication gives

ψ(x× y) = ψ(x)×ψ(y).

Let’s come to work on the surjective and injective aspects. The core reason for why ψ is both surjective and injective is
the relative primality of n and m. This result does in fact extend to much broader contexts.

The map ψ is injective.
Assume there are two elements x, y ∈ Z/nmZ having same image by ψ , i.e. ψ(x) = ψ(y). This does equivalently mean that

x̄n ≡ ȳn [n]
x̄m ≡ ȳm [m]

Thus
(x− y)n ≡ 0 [n]
(x− y)m ≡ 0 [m]

and both n and m divide x− y. The Smallest Common Multiple of n and m does then divide x− y. Since n∧m = 1, that
SCM is nm6. We thus get x≡ y [nm] which is what we expect.

The map ψ is surjective.
The surjective aspect can be deduced from the fact both domain and target have same cardinal and the map is injective. As
is always the case with any computer scientist we’re interested in an explicit construction of inverse of ψ : a function φ

sending y = (y1,y2) ∈ Z/nZ×Z/mZ on x ∈ Z/nmZ such that ψ(x) = y. By hypothesis there are integers u and v such that

un+ vm = 1.

Looking at this relation both modulo n and m we get that

vm ≡ 1 [n]
un ≡ 1 [m]

6Gauss Lemma!

5 Input of the CRT 15

The integer x = y1vm+ y2un does then satisfy

y1vm+ y2un ≡ y1vm ≡ y1 [n]
y1vm+ y2un ≡ y2un ≡ y2 [m]

which is exactly saying ψ(x) = y. Thus φ is defined by

φ(y1,y2) = y1vm+ y2un [nm]

where v and u are previously defined integers coming from the Bézout relation, y1 ∈ {0, . . . ,n−1} and y2 ∈ {0, . . . ,m−1}.
To be accurate one would need to check that any other choice (u′,v′) of Bézout coefficients would give the same map φ .
Any such other choice can be written as (u′,v′) = (u+ km,v− kn) for some k ∈ Z. But then the expression becomes

y1v′m+ y2u′n = y1(v− kn)m+ y2(u+ km)n (18)
= y1v+ y2m+(−y1k+ y2k)mn (19)
≡ y1v+ y2m [nm]. (20)

The choice of different Bézout coefficients gives indeed same inverse φ .

Example 4.10 Let’s look at a quick example to check for strategy to build up inverse element by ψ . Take (n,m) =
(4,7) and consider the couple (2,5) ∈ Z/4Z×Z/7Z. Following steps of previous proof we first need to have Bézout
coefficients assessing the fact 4 and 7 are relatively prime. A quick computation gives

(−5)×4+3×7 = 1.a

The element
5× (−5)×4+2×3×7≡ 26 [28]

has remainder modulo 4 which is 2 and one modulo 7 which is 5, i.e. ψ(26) = (2,5).

aThese are not the only Bézout coefficients but the ones given by Euclid’s algorithm.

Corollary 4.9 Given an integer k > 1, let m1, . . . ,mk be a list of positive integers > 1 that are pairwise relatively prime.
Denote by m the product of m1 up to mk. The map

ψ : Z/mZ −→ Z/m1Z×·· ·×Z/mkZ
x 7−→ (x̄m1 , . . . , x̄mk)

is a bijection that is compatible to component-wise addition and multiplication on target.

Proof. We’ll be mainly giving outlines of proof in the following. Formalizing it properly would take us astray.
Compatibility to pairwise addition and multiplication is tautological and stems from the fact modulo operation is

compatible to both addition and multiplication. Proof of bijective aspect is algorithmic ; it is based on an inductive use of
the Chinese Theorem approach for building up an inverse map.

If we wanted to check map is injective we find ourselves in the exact same position as was the case in the proof of 4.8.
Two elements that have equal image have a difference that can be divided by m1, . . ., mk. Since these are pairwise relatively
prime it divides m. Thus equality modulo m. This is again enough to show map is a bijection. The point being that both
domain and target have same cardinal.

Here is how building up inverse image of an element (y1, . . . ,yk) goes : assume you have an inverse image y1··· j of
(y1, . . . ,y j) for 1≤ j < k in Z/(m1 · · ·m j)Z. Then an inverse image of (y1, . . . ,y j,y j+1) in Z/(m1 · · ·m j+1)Z is

y1··· jum j+1 + y j+1v(m1 · · ·m j)

where u and v are Bézout coefficients respectively for m j+1 and m1 · · ·m j.

5 Input of the CRT

Core questions in arithmetic are about identifying prime and invertible numbers. Aim is then to be able to factor a given
non-invertible number into its prime components. Factoring is a heavy process ; the reason why RSA ciphering method

5.1 Computing Invertibles 16

is secure enough when having high enough prime numbers involved. Another type of difficulty is related to the fact that
looking at powers of big enough integers has a high toll on computations. Many standard ciphering methods are based on
taking powers of such high enough numbers.

The Chinese Remainder Theorem can help out breaking into smaller problems each of the previous issues. This is
already something we can imagine for the case of powers of an integer:
Let’s assume we’re working with integers smaller than a fixed given integer M. Let

M = M1M2 · · ·Mh

where M js are pairwise relatively prime integers. The CRT states that

Z/MZ' Z/M1Z×·· ·×Z/MhZ

where ' is a notation to specify that there is a bijective map from one to the other, which is compatible to arithmetic
operations ; this is what we call an isomorphism. Given non-negative integers x and k such that xk is smaller than M then
one can compute xk by looking at the k-power of each component of(

x̄M1 , x̄M2 , . . . , x̄Mh

)
then building up inverse image through the CRT map. The fact each single computation is quicker on the right-hand side
is related to the fact that factors are smaller, since they’re constants of the system one might have computed their Euler
numbers and thus make use of simplifications (integer divisions) to compute these powers.

R Notice that if M is chosen prime or power of a prime, such strategy does not make sense. The CRT doesn’t give any
decomposition in this case.

The previous approach is the standard one for the use of the CRT: We’re willing to make a specific check or computation
in Z/MZ, we look at image of data in Z/M1Z×·· ·Z/MhZ make quicker equivalent computations component-wise then
get back output results on Z/MZ.

5.1 Computing Invertibles

Let’s look back at the previous example of Z/6Z. Following the CRT we have an isomorphism between Z/6Z and
Z/2Z×Z/3Z given by the map the output of which is composed of reduction modulo 2 and 3 of input.

Z/6Z Z/2Z×Z/3Z
0
1
2
3
4
5

0 1
0 (0,0) (0,1)
1 (1,0) (1,1)
2 (2,0) (2,1)

The invertible elements in Z/6Z are the shaded ones. Their image in Z/2Z×Z/3Z are the shaded cells corresponding to
(1,1) and (1,2). In Z/6Z the inverse of 1 is itself and so is the case for 5. Multiplying (1,1) and (1,2) each one by itself
we get (1,1) for first and (1,4) = (1,1) for second. Thus, for each element x of either of them there is an element y such
that xy = (1,1). In a sense we’re saying that both elements (1,1) and (1,2) are invertible in Z/2Z×Z/3Z. The element
(1,1) replaces in this context the element 1 ∈ Z/6Z. It is called the neutral element of Z/2Z×Z/3Z since multiplication
of any element z ∈ Z/2Z×Z/3Z by (1,1) gives back z. Rephrasing this remark one can say that invertible elements in
Z/6Z correspond to invertible ones in Z/2Z×Z/3Z.

The element of a product Z/M1Z×·· ·×Z/MhZ only composed of entries equal to 1 is called the neutral element of
that product. The multiplication of any element z by (1, . . . ,1) is equal to z. An element x ∈ Z/M1Z×·· ·×Z/MhZ is
said to be invertible if there is an element y such that xy = (1, . . . ,1). These definitions generalize the ones we’ve seen for
Z/nZ.

Proposition 5.1 An element x ∈ Z/MZ is invertible iff its image ψ(x) by the CRT map is so.

5.2 Factoring Integers 17

Proof. Let x be an invertible element in Z/MZ. By definition, there is y ∈ Z/MZ such that xy≡ 1 [M]. Taking image by
the CRT map ψ of both hand-sides of equation we get

ψ(xy) = ψ(x)ψ(y) = (1, . . . ,1)

which does exactly say that any invertible element x of Z/MZ is sent on an invertible one of Z/M1Z×·· ·×Z/MhZ.
Conversely let x be an element in Z/MZ such that ψ(x) is invertible in Z/M1Z×·· ·×Z/MhZ. By definition there is
ȳ ∈ Z/M1×·· ·×Z/MhZ such that ψ(x)ȳ = (1, . . . ,1). Since ψ is an isomorphism, there is y ∈ Z/MZ such that ψ(y) = ȳ.
We can thus write that

ψ(1) = (1, . . . ,1) = ψ(x)ψ(y) = ψ(xy).

Applying ψ−1 at extremities of the above sequence of equalities we get xy≡ 1 [M].

Corollary 5.2 The CRT map ψ defines a bijection

ψ
× : (Z/MZ)× −→ (Z/M1×·· ·×Z/MhZ)×

compatible to multiplication. It is defined as the h-tuple of the reductions modulo Mi of the input ; as is the case for ψ .

In order to compute inverse of element x in Z/MZ one can

• compute image (x̄1, . . . , x̄h) of x by the CRT map in Z/M1×·· ·×Z/MhZ;

• find inverse ȳi of each element x̄i in Z/MiZ if any;

• if previous step doesn’t go through x wasn’t invertible, otherwise compute inverse y by CRT map of (ȳ1, . . . , ȳh);

• computed y is inverse of x.

5.2 Factoring Integers

With a little more care, the previous divide and conquer strategy might be fruitful to factor integers smaller than M. Let’s
first check the simple example M = 15. The CRT claims the CRT map ψ gives an isomorphism

Z/15Z' Z/3Z×Z/5Z.

On the left-hand side of isomorphism we get the decomposition 14 = 2×7. Taking image of both sides of inequality by ψ

we get the equation (2,4) = (2,2)× (1,2). Which one can still write as

ψ(14) = (2,4) = (2×1,2×2) = (2,2)× (1,2) = ψ(2)×ψ(7).

It does suggests the idea that factoring 14 is about factoring each one of the entries of its image under the CRT map, then
rebuilding inverse images of each factor using the CRT map. For this to make sense one would first need each factor to
have an inverse image by the CRT map that is smaller than the integer we’re expecting to factor. For instance if you take 12
its image in Z/3Z×Z/5Z is (0,2) which, for instance, is the product of (0,4) and (0,3). Now (0,4) has inverse image by
the CRT map which is 9 and (0,3) has such inverse given by 3. The product of 9 by 3 does give 12 only modulo 15 and is
not an integer decomposition of 12. Notice that the previous decomposition of (0,2) is not unique, another decomposition
could have given a different output. An even more striking example is the one taken with 5. Its image by under the CRT
map is (2,0) whose the product of (2,0) and (1,0). Their respective images are 5 and 10, the product of which is indeed 5
modulo 15, but certainly not a non-trivial decomposition of the prime 5 in Z.

Rather than giving a complete understanding of this phenomenon as is, let’s have a look at it through the forceful search
for factors. Let’s consider we’re looking for a factor of an integer m smaller than M. One naive but valid way to do so is to
go through all integers from 2 up to

√
m, testing for divisibility. Equivalently we can go through integers k starting at 2 and

adding 1 till we either find a divisor of m or get k2 > m. On the right-hand of the CRT map, i.e. in Z/M1Z×·· ·Z/MhZ,
this is equivalently given by:

1. Let κ = (2̄M1 , . . . , 2̄Mh).

2. Loop as long as κ has a component whose square is bigger than corresponding component of ψ(m).

3. Test whether κ divides ψ(m) component-wise;

6 Ciphering : An Ersatz 18

• if not increment κ by (1, . . . ,1) and loop back

• else inverse image k of κ by the CRT map is a factor of m.

R In case m is invertible and can be factored by k then co-factor of m by k is mk−1. Otherwise there is no unique co-factor.
This is the case above for 12≡ 3×9≡ 3×4 [15].

6 Ciphering : An Ersatz

Ciphering is the act of transforming a message into an unintelligible one except for the recipient. It does involve a ciphering
procedure and a deciphering one. From an abstract perspective, letting M be the set of messages and C the set of encrypted
messages, a ciphering method involves two maps c : M → C and d : C →M such that d◦ c= idM . The sender has to
know of c and the recipient of d. There are a couple of properties we expect from a cipher:

• Images of the methods c and d are easy and quick to compute;

• The methods c and d are hard to figure out if you’re only having a subset (all) of encrypted messages C .

R Everything in a computer being sequences of numbers the sets of messages M and encrypted ones C shall be mostly
identified with integer types. Transforming a human readable message into an integer type is about encoding characters.

6.1 Symmetric Ciphers

The simplest symmetric cipher is the one know as Caesar’s cipher. Take the alphabet and shift the position of its letters by a
given number as pictured in 1. The ciphering map c in this case is the one read up-down and sending a to f , b to g etc.

a b c d e f g h i j k l m n o p q r s t u v w x y z
f g h i j k l m n o p q r s t u v w x y z a b c d e

Figure 1: Alphabet shift by 6 for Caesar’s cipher

Ciphering hello is thus given by
c(hello) = mjqqt

applying image of map character-wise. To get back original message you simply need to read previous table bottom-up.
The map d reads f goes to a, g goes to b, etc. Knowing d or c is about knowing the same table but reading it differently.
Both sender and recipient of message have equivalent knowledge of cryptosystem. Having d is enough to have c and
vice-versa. That’s the reason why such a cryptosystem is said to be symmetric, knowledge of sender and recipient of the
encryption and decryption data are equivalent.

Putting character encoding on the side, the Caesar cipher principle can be summed up in the following form : give
yourself an integer n > 1 modulo which we’ll be working, a Caesar cipher is then about the choice of an integer k ∈ Z
corresponding to the shift. The map c : Z/nZ→Z/nZ is given by c(x) = x+k. Its inverse is simply given by the expression
d(x) = x− k.

R The previous encryption system is wholly determined by the integer k. When an encryption is determined by such
numerical data that numerical data is often called a key.

Question 6-2 How can you generalize the previous encryption system?

Question 6-3 Can you think of a way to discover (we say break) a Caesar cipher, if you have enough alphabetical
ciphered messages?

6.2 Asymmetric Ciphers 19

6.2 Asymmetric Ciphers

An asymmetric cryptosystem, in contrast with the previous case, is a cryptosystem where sender has as hard a time as any
external party to know of the deciphering method. It involves the release of public data by the recipient allowing any party
to send them a ciphered message, c is then publicly accessible to all. The recipient is the only one to have the deciphering
method d. The main point is to build up a system in such a way that d is hard to figure out only having c.

6.2.1 RSA Cryptosystem
The RSA cryptosystem is based on the fact it takes time to factor an integer into its prime factors. In the case at hand this is
going to be translated by : it is too time-consuming to extract a prime factor from a number which is a product of two huge
prime numbers.

The RSA cryptosystem involves both public and private keys. The first is needed to build c and is available to all, the
second is only known by the recipients who make their public key available to all.

To build both data one needs two (distinct) huge prime numbers p and q, whose product will be denoted by n = pq, as
well as an invertible element e in Z/ϕ(n)Z whose inverse is written d.

Public key This is the data (n,e).

Private key This is the data d.

Before getting into the ciphering and deciphering methods let’s take a minute to explain how to generate such keys. We’ve
seen in 5 the multiplicative group of Z/nZ is of cardinal

ϕ(n) = ϕ(p)ϕ(q) = (p−1)(q−1).

To find an invertible element e ∈ Z/ϕ(n)Z we need to look for an element e which is coprime to (p−1)(q−1).
Given public and private data for an RSA cryptosystem:

Ciphering Given a message x ∈ Z/nZ the corresponding ciphered message is xe [n]. The map c is simply given by the
expression c(x)≡ xe [n].

Deciphering To decipher a message y ∈ Z/nZ one looks at yd [n]. The deciphering map is simply given by d(y)≡ yd [n].

Notice both ciphering and deciphering methods are about taking exponents of an integer modulo n. Modular fast
exponentiation is easy and quick to compute ; one of the requirements to be a usable cryptosystem.

Proposition 6.1 Previous data do indeed define a cryptosystem, i.e. d◦ c= id.

Proof. Assume first we’re given an invertible element x ∈ (Z/nZ)×. We’re willing to prove that, for any such x

d
(
c(x)

)
≡ d

(
xe)≡ xed ≡ x [n].

By definition ed ≡ 1 [ϕ(n)]. It means there is k ∈ Z such that

ed + kϕ(n) = 1.

Following 4.4

xed ≡ x1−kϕ(n) ≡ x×
(

xϕ(n)
)−k
≡ x [n].

Notice here that in case k is positive then we’re looking at the negative power of 1 which has to be understood as the power
of the inverse of 1 (i.e. 1).
Assume x is not invertible anymore. Using the Chinese remainder theorem we have that

(Z/nZ)× = (Z/pZ)×× (Z/qZ)× .

Since invertibles of Z/pZ and Z/qZ are all the non-zero elements, we get that non-invertible elements modulo n correspond
to couples having the form (0,x2) for x2 ∈ Z/qZ or (x1,0) for x1 ∈ Z/pZ. If both entries are 0 then expected result is
indeed satisfied. Let’s assume that none of x1 nor x2 are 0. Using previous notation in the first case we get that

(0,x2)
ed ≡ (0,x1−kϕ(p)ϕ(q)

2)≡
(

0,x2×
(
xϕ(q)

2

)−kϕ(p)
)
≡ (0,x2) [n]

which is what we expect. Symmetric case with x1 is checked in a similar fashion.

6.2 Asymmetric Ciphers 20

6.2.2 ElGamal Cryptosystem
The ElGamal Cryptosystem is based on the difficulty of solving equations of the type ak ≡ b [n] for a given fixed a, b and
n, k being the variable of the equation. This is called the discrete logarithm problem7. It is a little more challenging than
the RSA to write down.

ElGamal cryptosystem lives within publicly available data (p,g):

• p is a prime number modulo which the logarithm problem is difficult to solve.

• g is an element modulo p having high enough order8.

Such data can be generated by the recipient or any other trusted party. Having such public data available the recipient
chooses a private key a ∈ Z and computes and makes available their public key A = ga [p]. Thus having public data (p,g)

Private key (Nearly) Any (big enough) chosen integer a.

Public key The integer A = ga modulo p.

Given a prime number p for which the logarithm problem is difficult enough, finding g is first about testing for numbers
having high enough orders. The order of an element g is a divisor of p− 1. For example if we take a prime number
p = 2q+1 where q is still prime, then the order of g is either 1, 2, q or 2q. Thus if g2 is not 1 modulo p, then g must be of
order q or 2q which can be high enough.

Given public data and an ElGamal public key:

Ciphering Given a message x ∈ Z/pZ, sender generates an ephemeral9 random integer k. The ciphered message is the

couple (c1,c2) where c1 = gk and c2 = xAk. The map c is then defined by the expression c(x) = (gk,xAk) for a given
ephemeral key k.

Deciphering To decipher a message (y1,y2) ∈ Z/pZ recipient computes (ya
1)
−1 y2. The map d is defined by d(y1,y2) =

(ya
1)
−1y2.

Proposition 6.2 Previous data do indeed define a cryptosystem, i.e. d◦ c= id.

Proof. Using previous notation our aim is to prove that

(ca
1)
−1 c2 =

(
gak

)−1
xAk = x

The first equality is nothing but the definition. For the second one, by construction

ga ≡ A [p]

thus (
gak

)−1
Akx≡ x [p]

and that is our expected result.

7You’re invited to ask your maths teachers for the reason why such question is related to logarithms.
8Recommended to be prime.
9Only to be used once!

	1 Introduction
	2 How To Read This Document
	3 Integer Arithmetic
	3.1 Euclidean Division
	3.2 Primality
	3.3 Euclid's Algorithm
	3.4 Bézout Theorem

	4 Modular Arithmetic
	4.1 Day of Week
	4.2 The Ring Z/nZ
	4.3 Invertible Elements of Z/nZ
	4.4 Fermat's Little Theorem
	4.5 Chinese Remainder Theorem

	5 Input of the CRT
	5.1 Computing Invertibles
	5.2 Factoring Integers

	6 Ciphering : An Ersatz
	6.1 Symmetric Ciphers
	6.2 Asymmetric Ciphers
	6.2.1 RSA Cryptosystem
	6.2.2 ElGamal Cryptosystem

